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Estimates of the mass lost from the Greenland ice sheet from data collected

by the Gravity Recovery And Climate Experiment (GRACE) have widely var-

ied (1–3). While the continentally and decadally averaged estimated trends

have now more or less converged (4,5), to this date there is little clarity on the

precise spatial pattern of Greenland’s mass loss, nor on how the geographical

pattern has varied on relatively short time scales. Here we present a spatially

and temporally resolved estimation of the ice mass change over Greenland

between April 2002 and August 2011. While the total mass loss trend has re-

mained steady, actively changing areas of mass loss were concentrated on the

southeastern and northwestern coasts, with ice mass in the center of Green-

land steadily increasing.

The contribution to global sea level rise from the melting ofpolar ice sheets has been a focus

of intense study over the past several decades. Earth’s second largest ice sheet, Greenland,

has been surveyed by a multitude of techniques. Remote-sensing observations of laser and

radar altimetry and InSAR have constrained both the overallvariability in Greenland’s mass
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balance over time (6–12), and the local mass flux of its peripheral western and eastern outlet

glaciers (13–16). These measurements have shown both strong variations among seasons and

strong decadal variations in mass change rates (11,17).

Coincident with these observations since 2002, the Gravity Recovery And Climate Ex-

periment (GRACE) satellite mission has been mapping the Earth’s geopotential field contin-

uously, and many studies have used monthly snapshots of the geopotential field to estimate the

Greenland’s total yearly mass change (1–3, 18–20). These estimates have varied from -100 to

-250 Gt/yr, although, as additional data have been added, the range has narrowed to close to -

220 Gt/yr (4,5). One study (20) has reported accelerations in the annual mass loss of Greenland

of about -30 Gt/yr2.

The estimates of the spatial pattern of mass loss that can be made from GRACE are much

less well constrained than those from remote sensing. Whereas remote-sensing techniques sam-

ple discrete areas on the surface, the geopotential measurement made by GRACE at altitude

effectively samples over a broad region several hundred kilometers in diameter. In addition,

due to the character of the errors in the data, it is commonly deemed necessary to employ spa-

tial smoothing which further reduces the spatial resolution (21). GRACE results from the first

half of the 2000s have shown broad mass loss along the easternhalf of Greenland (1–3). Later

work has shown that mass loss increased along the northwest coast of Greenland later in the

decade (4,5,19,22).

In this paper we determine the spatial distribution of mass loss over time with unprecedented

detail compared to previous work, thanks to a new method of working with GRACE data prod-

ucts. Using spherical Slepian functions (23) we use more of the signal contained within the

noisy GRACE data, and are able to resolve the spatial changes in mass loss on a yearly ba-

sis. We thereby settle the controversies surrounding the geographical pattern of Greenland’s ice

loss, and the presence or absence of significant accelerations in the ongoing trends.
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Spherical harmonics are an orthogonal basis for the sphere,making the distribution of

“Stokes” expansion coefficients the method of choice for therelease of the GRACE Level-2

data products. These are currently bandlimited, complete to degree and order 60. When we

wish to examine only a region, e.g. Greenland, spherical harmonics are no longer ideal as they

lack orthogonality over the region. Estimating a regional signal this way thus becomes quite a

complex operation and the results have an unfavorable errorstructure (24), which makes signifi-

cance testing and detailed interpretation all but impossible. To deal with these difficulties, some

authors have chosen to give up spatial resolution altogetherby using averaging functions over

the landmass to determine the broad total rate of mass changeover time (3,25). Others have ex-

panded the GRACE coefficients into the space domain to estimate trends on a latitude-longitude

grid combined with forward modeling of mass anomalies (1, 4). Still others parameterize ei-

ther the direct intersatellite range measurements (2) or the global Level-2 solutions (5) into

basin-scale local mass variations. All of these methods make assumptions about the data or the

models that limit their spatial sensitivity, either by using predefined basin shapes, using basis

functions that are not orthogonal, performing smoothing orpost-processing to reduce assumed

errors but thereby potentially reducing the signal itself,or by outright spatial averaging. We

postulate that the historical lack of agreement between GRACE-based models of Greenland’s

mass loss is at least partly due to the failure to fully characterize the trade-offs and uncertain-

ties that accompany these various choices of averaging, filtering and parameterization that have

been made. Indeed, these dwarf the uncertainties on elasticstructure of the substrate or the mag-

nitude of post-glacial rebound corrections, both of which are needed to convert mass anomalies

to estimates of ice mass lost due to melting.

We thus bypass the commonly used filtering and averaging procedures altogether, and use

a simple method, with only a few assumptions of a statisticaland computational nature that

have been tested through extensive simulation. We base our estimation on an analysis in the
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spherical Slepian basis. The Slepian basis, which is formedby optimization (23), constitutes a

fully orthogonal bandlimited basis for a region of interest, in our case Greenland, and allows

us to obtain a spatial sensitivity that is superior to that ofthe non-optimal methods. Using

only those functions that have the majority of their energy concentrated within the region of

interest dramatically improves the signal-to-noise ratio, and the results experience very little

influence from signal originating outside the region of interest; minimization of the well-known

leakage problem is indeed the explicit optimization objective in the construction of the Slepian

basis (26).

We used 108 monthly GRACE Release-4 geopotential fields from the Center for Space

Research, University of Texas at Austin, covering the time span from April 2002 to August 2011

(including five gap months). The highly variable degree-twoorder-zero spherical-harmonic

coefficient is replaced with values from satellite laser ranging, as is by now customary (27). The

GRACE geopotential data are transformed into surface mass density using the classical method

of Wahr et al. (28). The surface mass density is subsequently projected onto aSlepian basis

designed to capture the region within Greenland’s coastlines but including a small buffer zone

of 0.5◦. The bandwidth of the Slepian basis,L = 60, matches the bandwidth of the GRACE

data products. We truncate the expansion at the effective dimension of the combined spatio-

spectral space (Greenland in space, bandlimited spectrally), known as the Shannon number (23).

This leaves only twenty target functions, each of which are “eigenmaps” that have their energy

highly concentrated over Greenland. This sparse model space represents a significant reduction

of the original spherical-harmonic dimension, which comprised (L + 1)2 = 3721 functions

whose expansion coefficients are substantially influenced by noise and required estimating by

the alternative methods. As described, our method involvedonly the selection of the size of the

buffer zone, the choice of bandwidth, and the number of termsin the Slepian expansion (see the
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Supplementary Online Material). The rationale behind our selections is validated by extensive

simulation.

The post-glacial rebound model of Paulsonet al. (29), is similarly projected into this ba-

sis and subtracted from the data. The total mass over the region, relative to a nine-year mean

(Fig. 1), is then calculated by integrating each function over the region, scaling by its corre-

sponding expansion coefficient, and summing over the twentyfunctions. We estimate measure-

ment error by fitting a linear trend, and a function with a period of one year to each of the Slepian

coefficient time series, and generating a covariance matrixfrom the residuals. This gives a con-

servative measure of the variance of each coefficient, whichwe extend to the uncertainty of

their sum via linear error propagation.

The total mass change (Fig. 1) shows a clear trend as well as anannual variation. We

calculate the best-fitting linear trend covering all 108 months and find the mass change rate

over our whole region to be -219.9±7.9 Gt/yr. The two-sigma uncertainty on the trend derives

from the fit covariance matrix, and does not include the uncertainty in the post-glacial rebound

correction (30). Fitting an additional quadratic term (see the Supplementary Online Material),

we find the acceleration of mass loss to be a modest -8.3±3.9 Gt/yr2. In Fig. 1, the error

envelope for the fit is shown with dashed lines. The overall trend is very well determined,

since with almost a decade of data the fit covers many seasonalcycles, which can vary strongly

between years. On this subject our results are in agreement with the most recent studies, but

in obtaining it we have relied on far fewer processing steps by the judicious choice of basis,

as described above. A reestimation of the trends up to the year 2006, in which three studies

appeared with much variability in the conclusions (1–3), reconciles the estimates as nearly

falling within each other’s uncertainties when evaluated according to our method. We conclude

that the discrepancies in the literature were more a matter of statistics rather than physics or

data selection.
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Using an extension of our approach to estimate the average mass trend we are able to mea-

sure the spatial pattern of mass change and how it changes with time. To each of our twenty

Slepian-function expansion-coefficient time series we have fit either a 1st, 2nd, or 3rd order

polynomial, depending on whether each additional term passed anF -test for significance. This

then becomes our new estimate for the signal. These fits embody the gradual changes over time

spans of several years, and ignore much of the variability within each year. Fig. 2 displays a

map of the total mass change of the estimated signal over the eight-year period from January

2003 to January 2011 (31). There is a clear concentration of mass loss along the coasts, mainly

in the southeast and in the northwest, where radar interferometry reports large ice flow speeds

associated with outlet glaciers (9). While the broad-scale agreement with prior results from

GRACE (22) is a tribute to the quality and longevity of the data, the degree of spatial localiza-

tion that we derive from the Slepian-basis methodology significantly shrinks the geographical

footprint that can now be robustly modeled.

In the central high-elevation portions of Greenland there is evidence for significant accu-

mulation of ice mass, much more clearly so than seen in previous GRACE studies (4, 19, 22).

Accumulation in the interior of Greenland is an expected result of a warming climate (8) and

has been observed with studies of satellite altimetry (6, 9, 10, 32). Our observation of the in-

terior mass accumluation is spatially very well resolved and this, too, represents a significant

improvement over earlier attempts to localize this anticipated pattern from GRACE data alone.

The better-resolved spatial maps of Greenland’s mass loss are accompanied by the possibil-

ity to extract higher-resolution temporal variations of the geographic signal. When each year

is examined in more detail (Fig. 3) the loci of largest mass loss move around Greenland with

time. In 2003 and 2004, mass loss is concentrated along the entire eastern coast of Greenland.

In 2005 and 2006, mass loss was reduced in the northeast whileit increased in the southeast.

Meanwhile, mass loss began to increase along the northwest coast. From 2007 to 2010, mass
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loss further increased in northwest Greenland while mass loss diminished in the southeast coast

areas after 2008. Each year has a region in the interior of Greenland with mass increase of

> 5 cm/yr (light blue), and that region has shifted slightly from year to year.

Overall, these spatially shifting mass changes match well to remote-sensing observations.

The increased mass loss in southeast Greenland first seen in 2005 coincides with acceler-

ated flow observed in eastern outlet glaciers during that time (15). Increasing mass losses

in northwest Greenland since 2006 are also seen in observations of radar interferometry and

GPS (11,22). The observed deceleration in mass loss in the southeast in2009 and 2010 may be

related to decreased glacier velocities in that region (33) although continued study is needed to

substantiate this claim.

Our results together demonstrate both the power of spatiospectrally concentrated “Slepian”

localization methods in enhancing the signal-to-noise ratio for regional modelling, and of course

the benefits of using a long time series of time-variable gravimetry to examine the long-term

mass flux over glaciated areas. As this kind of data, e.g. fromthe GRAIL mission orbiting

the moon, or from GRACE follow-on missions, continue to evolve as technology improves, so

have the methods to study them. Pushing the envelope of the analysis will ensure that satellite

gravity, even when other, more direct observations, shouldbe lacking, will continue to play a

major role in studying terrestrial, lunar and planetary systems in the future.
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Figure 1: Total mass change trend for Greenland. The solid black line is the raw GRACE
monthly solution projected into the Slepian basis optimized to capture the interior of the coast-
lines of Greenland plus a 0.5◦ buffer region, and a bandwidth ofL = 60. The solid blue line
is the best-fitting linear trend. The dashed blue lines represent the two-sigma error envelope of
this fit.
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Figure 2: Geographical pattern of the mass change over Greenland averaged for the period
between 1/2003 and 1/2011. The map is the result of the combination of signal estimates con-
ducted on individual time series of Slepian-function expansion coefficients. The integral value
“Int” for the entire epoch is shown in Gt/yr. The zero cm watercontour shown in black.
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Figure 3: Yearly-resolved maps of mass change over Greenland from 2003 to 2010. The sum
of these maps was shown in Fig. 2. Every year shown is the difference of the signal estimated
between January of that year and January of the next. The integral values of the mass change
per year are shown as “Int”, expressed in Gt. The zero cm/yr water contours are shown in black.
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Determination of Noise

GRACE data are released as spherical-harmonic coefficients along with calibrated errors that

represent the diagonal elements of the covariance matrix ofthe estimated global monthly so-

lutions. It is known that these calibrated errors underestimate the variance in GRACE solu-

tions (1), and that monthly solutions are dominated by north-south trending linear “stripe”

anomalies (2). Thus, many authors choose to estimate their own uncertainty for their mod-

eling (3), and attempt to remove estimated noise components (2,4).

Here, we examine each spherical-harmonic coefficient individually as it varies over time,

and find a least-squares estimate of a linear term and a seasonal term with a 365 day period.

We consider this fit to be an estimate of the signal contained in the GRACE data, and the

residuals form a conservative estimate of the noise. Fig. 1,which examines the coefficients

spectrally, shows the results of this procedure. Panel (a) shows a single monthly solution of

GRACE data, for February 2010; panel (c) shows the predictionof the signal component for
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this month; panel (d) shows the residual after subtracting the signal from the data. Generally,

the prediction is dominated by energy in coefficients with degrees less than 30. Meanwhile

the residual has some energy at low-degree coefficients, butis mainly comprised of energy in

coefficients where the orderm (and degreel) is −30 & m & 30. This corresponds to the

higher-frequency north-south oriented stripes commonly observed. Finally, panel (b) shows

the standard deviations of these residual coefficients overall the months considered. We have

made the implicit assumption that the noisy stripes seen in GRACE monthly data are related to

the satellite-orbit characteristics specific to each monthconsidered, and therefore these stripes

should not have a coherent secular expression over time.

In practice, there is little reason to think that time-variable geopotential signals are best

estimated from basis functions that spread their energy over the entire globe. For instance,

processes that act in different locations at different times (e.g. monsoons) could easily display

competing effects in the same spherical harmonic coefficient. Thus in our determination of

noise specifically over Greenland, we estimate signal and noise in the Slepian basis to avoid

contamination from other regions. However, to illustrate the importance of estimating the noise

covariance and accounted for it in the subsequent analysis,the global spherical-harmonic anal-

ysis performed here provides a convenient example.

Covariance of the Noise

We use the spherical-harmonic coefficient residuals from each month to construct a covariance

matrix (Fig. 2, shown as a correlation matrix). The residualcorrelation matrix shows many off-

diagonal terms with large correlations. This is contrary towhat is normally assumed by other

authors, who examine only the diagonal elements of this matrix (the variance) and assume the

off-diagonal terms are zero.
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These large covariance terms make important contributionsto the observed spatial covari-

ance on the sphere. In Fig. 3 we show the difference inspatialcovariance when the fullspectral

covariance matrix, or only the variance (its diagonal elements) are being used. We consider the

covariance between a point in central Greenland with all theother points on the Earth, and do

the same with a point in western Antarctica.

Additionally, in Fig. 4 we show how our spatial variance compares with the calibrated er-

rors distributed with the monthly geopotential solutions.Most notably, our spatial variance has

significant longitudinal dependence compared to the calibrated errors, while also displaying

somewhat higher values of standard deviation than the calibrated errors. It is clear that without

the use of the full covariance matrix, estimates of the errorin mass change results may be inac-

curate. By taking a conservative estimate of the full noise covariance of the data into account we

can have high confidence in our mass estimates compared to theresults derived from techniques

that don’t.

The spherical Slepian basis

Given that (1) time-variable gravity signals often originate in specific regions of interest, (2) our

data are discreetly measured and therefore have a bandlimit, and (3) we may wish to exclude

some portion of the spectrum where the error terms are expected to dominate, then we desire

an orthogonal basis on the sphere that is both optimally concentrated in our spatial region of

interest and bandlimited to a chosen degree. For this purpose we use the spherical analog to the

classic Slepian concentration problem (5–8), and define a new set of basis functions

gα(r̂) =
L∑

l=0

l∑
m=−l

gα,lmYlm(r̂), gα,lm =

∫
Ω

gα(r̂)Ylm(r̂) dΩ. (1)

These functions maximize their energy within our region of interestR following
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λ =

∫
R

g2

α(r̂) dΩ
∫

Ω

g2

α(r̂) dΩ
= maximum, (2)

where1 > λ > 0. The Slepian coefficients,gα,lm, are found by solving the eigenvalue equation

L∑
l′=0

l′∑
m′=−l′

Dlm,l′m′gl′m′ = λglm, (3)

where the elements ofDlm,l′m′ are products of spherical harmonics integrated over the region R,∫
R

YlmYl′m′ dΩ = Dlm,l′m′ . (4)

The Slepian basis is an ideal tool to conduct estimation problems that are linear or quadratic in

the data (8,9). The data can now be projected into this basis as

d(r̂) =

(L+1)
2∑

α=1

dαgα(r̂) =
L∑

l=0

l∑
m=−l

dα,lmYlm(r̂) (5)

and by using a truncated sum up to the spherical Shannon number,

N = (L + 1)2
A

4π
, (6)

whereA/4π is the fractional area of localization toR, we can sparsely approximate the data,

yet with very good reconstruction properties within the region (10):

d(r̂) ≈
N∑

α=1

dα gα(r̂) for r̂ ∈ R. (7)

This procedure is analogous to taking a truncated sum of the Singular-Value Decomposition of

an ill-posed inverse problem (10). Since the ill-posedness is in part derived from the focus on

the limit area of interest, our procedure in effect determines the singular vectors of the inverse

problem from the outset, based on purely geometric considerations, which is efficient.

We solve for a Slepian basis for Greenland (Fig. 5) up to the same degree and order of the

available GRACE data, thus the bandwidthL = 60. We use the coastlines of Greenland and

extend them by 0.5◦ to create the region of concentrationR. With truncation at the Shannon
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numberN the basis has twenty Slepian functions localized to the region, with the twelfth best

function (Fig. 5) still concentrated toλ = 86.9%.

The Slepian functions are smoothly varying across the land-ocean boundary, and as a result

can have reduced sensitivity near this boundary. This is whywe extended the concentration

region by buffering away from the coastlines. The size of thebuffer zone was based on exper-

iments to recover a synthetic mass trend placed uniformly onGreenland’s landmass (Fig. 6).

In panel (a), we show the results of an experiment where a uniform synthetic signal is placed

over Greenland and we attempt to recover this trend. To replicate the experimental conditions

faced by the researchers on the ground we add synthetic realizations of the noise generated from

our empirical covariance matrix to this synthetic signal. The signal is best recovered when the

region of localization is extended away from the coastlinesby 0.5◦. This buffer region allows

us to better measure mass changes near the coastlines of Greenland, but is small enough that

we are not influenced by mass changes outside of Greenland, such as in Iceland or Svalbard. In

panel (b), we show how the actual recovered mass trends over Greenland vary depending on the

bandwidth and buffer (i.e. region) chosen. Roughly the sametrend is recoverable for a broad

combination of bandwidth and region buffer, however the lower bandwidths will have reduced

spatial sensitivity around Greenland.

Analysis in the Slepian basis

We project each monthly GRACE field, which we convert to surface density, into the Slepian

basis for Greenland, which results in a time series for each Slepian expansion coefficient. For

each of our twenty Slepian coefficients we fit either a 1st, 2nd, or 3rd order polynomial to the

time series, in addition to a 365-day period sinusoidal function, depending on whether each

additional polynomial term passes anF -test for significance. These quadratic and cubic terms

represent the inter-annual changes in the GRACE data over thedata time span. Examples of
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these fits are shown in Fig. 7. Here we show the time series of some coefficients and their

best-fitting functions, where the fitted annual periodic function has been subtracted. Some time

series, such as forα = 20, are best represented by a higher-order polynomial, while others,

such asα = 11, are fit by a linear function since higher-order terms do not significantly reduce

variance.

The mass change for an average year, shown in Fig. 8, is found by taking the total estimated

mass change from 2003–2010 and dividing by time considered.Most of the mass change of

this period projects into the first five Slepian functions, however the remaining fifteen functions

of the basis are also important to fully capture the spatial pattern of mass change, even if their

mass integrals do not form a large part of the total.

After fitting estimated signals in the Slepian domain, the monthly residuals can be used to

form an empirical covariance matrix for the Slepian functions (Fig. 2b). This information not

only gives us estimates for the uncertainty of the signal estimates for each Slepian function, but

it also allows us to determine the overall trend uncertaintyfor all of Greenland by combining the

variance and covariance in error propagation. Using the full covariance information allows us

to have high confidence in our trend estimation, more than we feel comfortable with in previous

work.

Finally, we can examine the time series for the three most-contributing Slepian functions,

which Fig. 9 expresses as the integral of the product of the expansion coefficient and the func-

tion. It is clear from this behavior functions that the mass signal trends can be well estimated

relative to the variance seen from month to month. The Slepian functions significantly enhance

signal-to-noise within the region of interest compared to traditional spherical harmonics, which

further validates our approach.
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Figure 1: Ordered maps of various spherical harmonic coefficients. (a) The geoidal coefficients
(dlm,92) of GRACE data from February 2010 after the average of all datamonths has been
removed. (b) Standard deviations (σlm = [1/M

∑M
n=1

dlm,n]1/2 for monthsn = 1, ...,M , where
n = 92 stands for February 2010) of the residuals as estimated by subtracting the least-squares
fits comprising a linear and two seasonal terms with periods 365 and 181 days from each time
series of geoidal spherical-harmonic coefficients and computing the covariance of the results.
(c) The predicted geoidal coefficients (slm,92) from the least-squares model fit as described
before (in panel b). (d) The residual geoidal coefficients (ǫlm,92 = dlm,92 − slm,92) determined
by subtracting the predicted coefficients (in panel c) from the GRACE geoidal field (in panel a).

8



Harig & Simons March 23, 2012 PREPRINT — DO NOT DISTRIBUTE

2 20 30 45 60

2

20

30

45

60

spherical harmonic degree l’

sh
pe

ric
al

 h
ar

m
on

ic
 d

eg
re

e 
l

a)
Residual SH correlation matrix from 108 months

between April 2002 and August 2011

1 N 2N 3N

1

N

2N

3N

Slepian function β

S
le

pi
an

 fu
nc

tio
n 

α

b)
Residual Slepian correlation matrix from 108
months between April 2002 and August 2011

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
Correlation

Figure 2: Correlation matrices for spherical-harmonic and Slepian coefficients created from the
residuals of 108 months from April 2002 to August 2011. (a) Correlation between spherical
harmonic coefficients, derived from the spectral covariancecov[ǫlm, ǫl′m′ ]. (b) Correlation be-
tween Slepian function coefficients for a basis for Greenland with a region buffer of 0.5◦ and a
bandwidth,L = 60. The rounded Shannon numberN = 20.
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Figure 3: Spatial covariance plots of residuals,cov[ǫr, ǫr′ ]. Fields have been rotated so that the
central cross denotes the pointr with which all the other pointsr′ covary. In panel (a) and (c)
the full spectral covariance matrix is used. Panels (b) and (d) uses only the spectral variance,
the diagonal elements of covariance matrix. (a,b) The covariance of a point in Greenland with
the rest of the Earth. (c,d) Covariance of a point in western Antarctica with the rest of the globe.
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Figure 4: Spatial standard deviation of (a) the diagonal elements of our own estimated co-
variance matrix and (b) the time-averaged calibrated errors distributed with GRACE monthly
solutions. Both plots are saturated at 80 cm water equivalent, but (a) and (b) have the denoted
maximums of 204 and 87 cm, respectively.
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Figure 5: Slepian eigenfunctionsg1, g2, ..., g12 that are optimally concentrated within a region
buffering Greenland by 0.5◦. Dashed line indicates the region of concentration. Functions are
bandlimited toL = 60 and are scaled to unit magnitude. The parameterα denotes which
eigenfunction is shown. The parameterλ is the corresponding eigenvalue for each function,
indicating the amount of concentration. Magnitude values whose absolute values are smaller
than 0.01 are left white.
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Figure 6: The results of synthetic experiments to examine how recovered trends vary for differ-
ent bandwidths (L) and different region buffers. (a) We place a uniform mass-loss trend over the
landmass of Greenland. To this trend at each month we add a realization of the noise from our
residual covariance matrix. We then attempt to recover thistrend for different bases over Green-
land and report the normalized trend. (b) For the same bases we report the trend recovered from
the actual GRACE data in Gt/yr. Also drawn is the 100% recoverycontour (from panel a). We
use this synthetic experiment to inform our preferred choice of a 0.5◦ buffer around Greenland.
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Figure 7: Time series of various (α = 1, 5, 6, 7, 11, 20) Slepian coefficients and their best-fit
polynomial (blue lines). Each coefficient is fit by an annual periodic and linear function, as well
as quadratic and cubic polynomial terms if those terms pass an F -test for variance reduction.
Shown here are the coefficient and fitted function values withthe annual periodic function
subtracted from both. The mean is removed from each time series.
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Figure 8: Predicted GRACE annual mass change in the Slepian basis for each of the first twelve
eigenfunctions. Each eigenfunction, denoted by its indexα, is scaled by the total change in
that coefficient from 1/2003–12/2010 divided by the time span (yrs), expressed as the cm/yr
water equivalent of surface density. Thus, this representsthe mass change for an average year
during this time span. The inset variable “Int” displays theintegral of each function in the
concentration region within the dashed line expressed as the mass change rate of gigatons per
year. Surface-density change of absolute value smaller than 0.1 cm/year is left white.

15



Harig & Simons March 23, 2012 PREPRINT — DO NOT DISTRIBUTE

−500

0

500

1000

2002 2004 2006 2008 2010

α = 1

α = 3

α = 11

Time

M
as

s 
ch

an
ge

 (
G

t)

Mass Change for each Slepian Function

Figure 9: Mass change in gigatons (Gt) for the three most significant Slepian-function terms
(α = 1, 3, 11), which contribute more than 70% of total mass change over the data time span.
Monthly data are drawn as the solid black lines while the2σ uncertainty envelopes are drawn
in grey. Each function has a mean of zero but has been offset from zero for clarity.
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