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Estimates of the mass lost from the Greenland ice sheet from data collected
by the Gravity Recovery And Climate Experiment (GRACE) have widely var-
ied (1-3. While the continentally and decadally averaged estimated trends
have now moreor less converged (4,5), to thisdatethereislittle clarity on the
precise spatial pattern of Greenland’s massloss, nor on how the geographical
pattern hasvaried on relatively short time scales. Here we present a spatially
and temporally resolved estimation of the ice mass change over Greenland
between April 2002 and August 2011. While the total mass loss trend hasre-
mained steady, actively changing areas of mass loss wer e concentrated on the
southeastern and northwestern coasts, with ice mass in the center of Green-

land steadily increasing.

The contribution to global sea level rise from the meltingolar ice sheets has been a focus
of intense study over the past several decades. Earth'siddagyest ice sheet, Greenland,
has been surveyed by a multitude of techniques. Remotergenbiservations of laser and

radar altimetry and INSAR have constrained both the ovesihbility in Greenland’s mass

1



Harig & Simons March 23, 2012 PREPRINT — DO NOT DISTRIBUTE

balance over time6~12, and the local mass flux of its peripheral western and eastetlet
glaciers (3—-19. These measurements have shown both strong variationsgaseasons and
strong decadal variations in mass change ret&si().

Coincident with these observations since 2002, the GraveagoRery And Climate Ex-
periment (GRACE) satellite mission has been mapping thehBageopotential field contin-
uously, and many studies have used monthly snapshots oétigotential field to estimate the
Greenland’s total yearly mass chande-8, 18-20. These estimates have varied from -100 to
-250 Gtlyr, although, as additional data have been addedatige has narrowed to close to -
220 Gt/yr @,5). One study 20) has reported accelerations in the annual mass loss of fareken
of about -30 Gt/yt.

The estimates of the spatial pattern of mass loss that carade from GRACE are much
less well constrained than those from remote sensing. Wheeeaote-sensing techniques sam-
ple discrete areas on the surface, the geopotential measatanade by GRACE at altitude
effectively samples over a broad region several hundremirieters in diameter. In addition,
due to the character of the errors in the data, it is commoednied necessary to employ spa-
tial smoothing which further reduces the spatial resofuf@l). GRACE results from the first
half of the 2000s have shown broad mass loss along the edstéwi Greenland1-3). Later
work has shown that mass loss increased along the northwast of Greenland later in the
decade4,5,19,22.

In this paper we determine the spatial distribution of mass bver time with unprecedented
detail compared to previous work, thanks to a new method okiwg with GRACE data prod-
ucts. Using spherical Slepian functiord3] we use more of the signal contained within the
noisy GRACE data, and are able to resolve the spatial changesmss loss on a yearly ba-
sis. We thereby settle the controversies surrounding tbgrg@hical pattern of Greenland’s ice

loss, and the presence or absence of significant accelesatidthe ongoing trends.
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Spherical harmonics are an orthogonal basis for the spmeadjng the distribution of
“Stokes” expansion coefficients the method of choice forrlease of the GRACE Level-2
data products. These are currently bandlimited, comptetegree and order 60. When we
wish to examine only a region, e.g. Greenland, sphericahbaics are no longer ideal as they
lack orthogonality over the region. Estimating a regionghal this way thus becomes quite a
complex operation and the results have an unfavorable ginwsture 24), which makes signifi-
cance testing and detailed interpretation all but impadssito deal with these difficulties, some
authors have chosen to give up spatial resolution altogéghesing averaging functions over
the landmass to determine the broad total rate of mass cluwmegéme @,25. Others have ex-
panded the GRACE coefficients into the space domain to estitreatds on a latitude-longitude
grid combined with forward modeling of mass anomaligs4j. Still others parameterize ei-
ther the direct intersatellite range measuremefjsof the global Level-2 solutionsb) into
basin-scale local mass variations. All of these methodsenagkumptions about the data or the
models that limit their spatial sensitivity, either by ugipredefined basin shapes, using basis
functions that are not orthogonal, performing smoothingast-processing to reduce assumed
errors but thereby potentially reducing the signal itsetfby outright spatial averaging. We
postulate that the historical lack of agreement between GRAased models of Greenland’s
mass loss is at least partly due to the failure to fully chi@maze the trade-offs and uncertain-
ties that accompany these various choices of averagirgyjiidt and parameterization that have
been made. Indeed, these dwarf the uncertainties on edasioture of the substrate or the mag-
nitude of post-glacial rebound corrections, both of whioh@eeded to convert mass anomalies
to estimates of ice mass lost due to melting.

We thus bypass the commonly used filtering and averagingedwoes altogether, and use
a simple method, with only a few assumptions of a statiséal computational nature that

have been tested through extensive simulation. We basestintagion on an analysis in the
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spherical Slepian basis. The Slepian basis, which is foraysaptimization 23), constitutes a
fully orthogonal bandlimited basis for a region of interastour case Greenland, and allows
us to obtain a spatial sensitivity that is superior to thath&f non-optimal methods. Using
only those functions that have the majority of their energpeentrated within the region of
interest dramatically improves the signal-to-noise ra#iod the results experience very little
influence from signal originating outside the region of re; minimization of the well-known
leakage problem is indeed the explicit optimization ohyecin the construction of the Slepian
basis £6).

We used 108 monthly GRACE Release-4 geopotential fields flmmCenter for Space
Research, University of Texas at Austin, covering the tipendrom April 2002 to August 2011
(including five gap months). The highly variable degree-twvder-zero spherical-harmonic
coefficient is replaced with values from satellite laseigiag, as is by now customarg?). The
GRACE geopotential data are transformed into surface masstgersing the classical method
of Wahret al. (28). The surface mass density is subsequently projected oBteman basis
designed to capture the region within Greenland’s coastlivut including a small buffer zone
of 0.5°. The bandwidth of the Slepian basis,= 60, matches the bandwidth of the GRACE
data products. We truncate the expansion at the effectimeniion of the combined spatio-
spectral space (Greenland in space, bandlimited spagtialown as the Shannon numb28s).
This leaves only twenty target functions, each of which @igénmaps” that have their energy
highly concentrated over Greenland. This sparse modeksggeesents a significant reduction
of the original spherical-harmonic dimension, which coieed (L + 1)? = 3721 functions
whose expansion coefficients are substantially influengedoiise and required estimating by
the alternative methods. As described, our method invobrey the selection of the size of the

buffer zone, the choice of bandwidth, and the number of tentise Slepian expansion (see the
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Supplementary Online Material). The rationale behind @lecions is validated by extensive
simulation.

The post-glacial rebound model of Paulsetnal. (29), is similarly projected into this ba-
sis and subtracted from the data. The total mass over therregglative to a nine-year mean
(Fig. 1), is then calculated by integrating each functioerae region, scaling by its corre-
sponding expansion coefficient, and summing over the twieimgtions. We estimate measure-
ment error by fitting a linear trend, and a function with a pdrof one year to each of the Slepian
coefficient time series, and generating a covariance min the residuals. This gives a con-
servative measure of the variance of each coefficient, whvetextend to the uncertainty of
their sum via linear error propagation.

The total mass change (Fig. 1) shows a clear trend as well aamal variation. We
calculate the best-fitting linear trend covering all 108 mhenand find the mass change rate
over our whole region to be -21%9.9 Gt/yr. The two-sigma uncertainty on the trend derives
from the fit covariance matrix, and does not include the uwagay in the post-glacial rebound
correction 80). Fitting an additional quadratic term (see the Supplesryn®nline Material),
we find the acceleration of mass loss to be a modest-83 Gt/yF. In Fig. 1, the error
envelope for the fit is shown with dashed lines. The overalhdris very well determined,
since with almost a decade of data the fit covers many seasgeiak, which can vary strongly
between years. On this subject our results are in agreem#éntive most recent studies, but
in obtaining it we have relied on far fewer processing steps$hie judicious choice of basis,
as described above. A reestimation of the trends up to the3@26, in which three studies
appeared with much variability in the conclusioris-8), reconciles the estimates as nearly
falling within each other’s uncertainties when evaluatecbading to our method. We conclude
that the discrepancies in the literature were more a maftstatistics rather than physics or

data selection.
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Using an extension of our approach to estimate the average tneaisl we are able to mea-
sure the spatial pattern of mass change and how it changedimi. To each of our twenty
Slepian-function expansion-coefficient time series weehf@veither a 1st, 2nd, or 3rd order
polynomial, depending on whether each additional termezhagF'-test for significance. This
then becomes our new estimate for the signal. These fits gnthedyradual changes over time
spans of several years, and ignore much of the variabilithiwieach year. Fig. 2 displays a
map of the total mass change of the estimated signal overighéyear period from January
2003 to January 201BQ). There is a clear concentration of mass loss along the aasinly
in the southeast and in the northwest, where radar intarfety reports large ice flow speeds
associated with outlet glacier8)( While the broad-scale agreement with prior results from
GRACE 2) is a tribute to the quality and longevity of the data, therdegf spatial localiza-
tion that we derive from the Slepian-basis methodologyifigantly shrinks the geographical
footprint that can now be robustly modeled.

In the central high-elevation portions of Greenland therevidence for significant accu-
mulation of ice mass, much more clearly so than seen in puevi@RACE studies4(, 19, 23.
Accumulation in the interior of Greenland is an expected ltesua warming climate §) and
has been observed with studies of satellite altime®ry©(10, 32. Our observation of the in-
terior mass accumluation is spatially very well resolved #ms, too, represents a significant
improvement over earlier attempts to localize this anatgol pattern from GRACE data alone.

The better-resolved spatial maps of Greenland’s mass lesscabmpanied by the possibil-
ity to extract higher-resolution temporal variations oé theographic signal. When each year
is examined in more detail (Fig. 3) the loci of largest mass Imove around Greenland with
time. In 2003 and 2004, mass loss is concentrated along tive eastern coast of Greenland.
In 2005 and 2006, mass loss was reduced in the northeast ivimtzeased in the southeast.

Meanwhile, mass loss began to increase along the northwast.derom 2007 to 2010, mass
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loss further increased in northwest Greenland while massdaminished in the southeast coast
areas after 2008. Each year has a region in the interior oéi@a@d with mass increase of
> 5 cml/yr (light blue), and that region has shifted slightlyrfrgear to year.

Overall, these spatially shifting mass changes match wekmote-sensing observations.
The increased mass loss in southeast Greenland first seedDi cincides with acceler-
ated flow observed in eastern outlet glaciers during thae t{d). Increasing mass losses
in northwest Greenland since 2006 are also seen in obsemgadif radar interferometry and
GPS (1,22. The observed deceleration in mass loss in the southe280fand 2010 may be
related to decreased glacier velocities in that regB8) &lthough continued study is needed to
substantiate this claim.

Our results together demonstrate both the power of spaadsaly concentrated “Slepian”
localization methods in enhancing the signal-to-noise fat regional modelling, and of course
the benefits of using a long time series of time-variable ignatry to examine the long-term
mass flux over glaciated areas. As this kind of data, e.g. fteenGRAIL mission orbiting
the moon, or from GRACE follow-on missions, continue to eeo&s technology improves, so
have the methods to study them. Pushing the envelope of digsawill ensure that satellite
gravity, even when other, more direct observations, shbaelthcking, will continue to play a

major role in studying terrestrial, lunar and planetary syss in the future.
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Total Mass Change
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Figure 1. Total mass change trend for Greenland. The soéidkbline is the raw GRACE
monthly solution projected into the Slepian basis optiiecapture the interior of the coast-
lines of Greenland plus a 0.Buffer region, and a bandwidth df = 60. The solid blue line
is the best-fitting linear trend. The dashed blue lines gmethe two-sigma error envelope of
this fit.
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Figure 2. Geographical pattern of the mass change over Gredraveraged for the period
between 1/2003 and 1/2011. The map is the result of the catibimof signal estimates con-
ducted on individual time series of Slepian-function exgan coefficients. The integral value
“Int” for the entire epoch is shown in Gt/yr. The zero cm watentour shown in black.
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Figure 3: Yearly-resolved maps of mass change over Greéritam 2003 to 2010. The sum
of these maps was shown in Fig. 2. Every year shown is therelifee of the signal estimated
between January of that year and January of the next. Thgrattealues of the mass change
per year are shown as “Int”, expressed in Gt. The zero cm/yemeaintours are shown in black.
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Determination of Noise

GRACE data are released as spherical-harmonic coefficidorg avith calibrated errors that
represent the diagonal elements of the covariance matrikeoéstimated global monthly so-
lutions. It is known that these calibrated errors undemeste the variance in GRACE solu-
tions (1), and that monthly solutions are dominated by north-sotghding linear “stripe”
anomalies 2). Thus, many authors choose to estimate their own uncéytéon their mod-
eling (3), and attempt to remove estimated noise component. (

Here, we examine each spherical-harmonic coefficient iddally as it varies over time,
and find a least-squares estimate of a linear term and a sddeam with a 365 day period.
We consider this fit to be an estimate of the signal contaimethe GRACE data, and the
residuals form a conservative estimate of the noise. FigvHich examines the coefficients
spectrally, shows the results of this procedure. Panell{@yvs a single monthly solution of

GRACE data, for February 2010; panel (c) shows the prediatiaie signal component for

1
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this month; panel (d) shows the residual after subtractiegsignal from the data. Generally,
the prediction is dominated by energy in coefficients witlgrées less than 30. Meanwhile
the residual has some energy at low-degree coefficientss lmoainly comprised of energy in
coefficients where the order. (and degre€) is —30 = m = 30. This corresponds to the
higher-frequency north-south oriented stripes commorigeoved. Finally, panel (b) shows
the standard deviations of these residual coefficients aVéine months considered. We have
made the implicit assumption that the noisy stripes seerRAGE monthly data are related to
the satellite-orbit characteristics specific to each maathisidered, and therefore these stripes
should not have a coherent secular expression over time.

In practice, there is little reason to think that time-vhtegeopotential signals are best
estimated from basis functions that spread their energy thee entire globe. For instance,
processes that act in different locations at different sirfeeg. monsoons) could easily display
competing effects in the same spherical harmonic coefficidimus in our determination of
noise specifically over Greenland, we estimate signal ansena the Slepian basis to avoid
contamination from other regions. However, to illustrdte importance of estimating the noise
covariance and accounted for it in the subsequent anatiigigjlobal spherical-harmonic anal-

ysis performed here provides a convenient example.

Covariance of the Noise

We use the spherical-harmonic coefficient residuals froomeaonth to construct a covariance
matrix (Fig. 2, shown as a correlation matrix). The residi@telation matrix shows many off-

diagonal terms with large correlations. This is contrarymuat is normally assumed by other
authors, who examine only the diagonal elements of thisimtre variance) and assume the

off-diagonal terms are zero.
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These large covariance terms make important contributiorise observed spatial covari-
ance on the sphere. In Fig. 3 we show the differenspatialcovariance when the fuipectral
covariance matrix, or only the variance (its diagonal eletsieare being used. We consider the
covariance between a point in central Greenland with allotier points on the Earth, and do
the same with a point in western Antarctica.

Additionally, in Fig. 4 we show how our spatial variance cargs with the calibrated er-
rors distributed with the monthly geopotential solutioNost notably, our spatial variance has
significant longitudinal dependence compared to the Gkl errors, while also displaying
somewhat higher values of standard deviation than theresditd errors. It is clear that without
the use of the full covariance matrix, estimates of the @rrenass change results may be inac-
curate. By taking a conservative estimate of the full nom&adance of the data into account we
can have high confidence in our mass estimates comparedresilies derived from techniques

that don't.

The spherical Slepian basis

Given that (1) time-variable gravity signals often orig@an specific regions of interest, (2) our

data are discreetly measured and therefore have a bandiinuit(3) we may wish to exclude

some portion of the spectrum where the error terms are eggaotdominate, then we desire
an orthogonal basis on the sphere that is both optimally extnated in our spatial region of

interest and bandlimited to a chosen degree. For this panpesuse the spherical analog to the
classic Slepian concentration probleB+-8), and define a new set of basis functions

L l
ga<f') = Z Z ga,lezm(f‘% Ga,lm = /an(f')yzm(f‘) dsd. (1)

=0 m=—1
These functions maximize their energy within our regionraérestr following
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[ s2iwao
)\ = R

/Q g2 () 9

wherel > X\ > 0. The Slepian coefficients,, ;,,,, are found by solving the eigenvalue equation

Z Z D! Gy = Agim, 3

=0 m/=—1'

where the elements db,,,, ;-,,,» are products of spherical harmonics integrated over theme,

= maximum (2)

/ Ylmy’m’ Q) = Dlm,l’m" (4)
R

The Slepian basis is an ideal tool to conduct estimationlprob that are linear or quadratic in

the data 8, 9). The data can now be projected into this basis as

(L+1)?
Z daga f. - Z Z dalm lm (5)
=0 m=-I
and by using a truncated sum up to the spherical Shannon number
A
N = (L+172, (6)
4

where A/4r is the fractional area of localization #, we can sparsely approximate the data,

yet with very good reconstruction properties within theioeg(10):

~ Y daga(t) for feR. (7)
a=1

This procedure is analogous to taking a truncated sum ofitiguar-Value Decomposition of
an ill-posed inverse probleniQ). Since the ill-posedness is in part derived from the foaus o
the limit area of interest, our procedure in effect detemsithe singular vectors of the inverse
problem from the outset, based on purely geometric coraiiters, which is efficient.

We solve for a Slepian basis for Greenland (Fig. 5) up to timesdegree and order of the
available GRACE data, thus the bandwidth= 60. We use the coastlines of Greenland and

extend them by 05to create the region of concentratidh With truncation at the Shannon

4
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numberN the basis has twenty Slepian functions localized to theoregvith the twelfth best
function (Fig. 5) still concentrated to = 86.9%.

The Slepian functions are smoothly varying across the tzoehn boundary, and as a result
can have reduced sensitivity near this boundary. This is whyextended the concentration
region by buffering away from the coastlines. The size oflibfer zone was based on exper-
iments to recover a synthetic mass trend placed uniformlzogenland’s landmass (Fig. 6).
In panel (a), we show the results of an experiment where amitynthetic signal is placed
over Greenland and we attempt to recover this trend. Toaatdithe experimental conditions
faced by the researchers on the ground we add synthetizagahs of the noise generated from
our empirical covariance matrix to this synthetic signale®ignal is best recovered when the
region of localization is extended away from the coastliog®.5. This buffer region allows
us to better measure mass changes near the coastlines afid@eebut is small enough that
we are not influenced by mass changes outside of Greenlastdasun Iceland or Svalbard. In
panel (b), we show how the actual recovered mass trends aeen{and vary depending on the
bandwidth and buffer (i.e. region) chosen. Roughly the sasm@ is recoverable for a broad
combination of bandwidth and region buffer, however thedowandwidths will have reduced

spatial sensitivity around Greenland.
Analysisin the Sepian basis

We project each monthly GRACE field, which we convert to swefdensity, into the Slepian
basis for Greenland, which results in a time series for edepi& expansion coefficient. For
each of our twenty Slepian coefficients we fit either a 1st, 2n8rd order polynomial to the
time series, in addition to a 365-day period sinusoidal fiem¢ depending on whether each
additional polynomial term passes ahtest for significance. These quadratic and cubic terms

represent the inter-annual changes in the GRACE data ovatataetime span. Examples of

5
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these fits are shown in Fig. 7. Here we show the time seriesmksmefficients and their
best-fitting functions, where the fitted annual periodicdiion has been subtracted. Some time
series, such as far = 20, are best represented by a higher-order polynomial, whhers,
such asy = 11, are fit by a linear function since higher-order terms do mgniéicantly reduce
variance.

The mass change for an average year, shown in Fig. 8, is foutaking the total estimated
mass change from 2003-2010 and dividing by time considekéokt of the mass change of
this period projects into the first five Slepian functionspeser the remaining fifteen functions
of the basis are also important to fully capture the spatidtigon of mass change, even if their
mass integrals do not form a large part of the total.

After fitting estimated signals in the Slepian domain, thenthty residuals can be used to
form an empirical covariance matrix for the Slepian funoidFig. 2b). This information not
only gives us estimates for the uncertainty of the signaheges for each Slepian function, but
it also allows us to determine the overall trend uncertdiatyll of Greenland by combining the
variance and covariance in error propagation. Using thlectwariance information allows us
to have high confidence in our trend estimation, more thanegbedomfortable with in previous
work.

Finally, we can examine the time series for the three mostriuting Slepian functions,
which Fig. 9 expresses as the integral of the product of tiparesion coefficient and the func-
tion. It is clear from this behavior functions that the maggal trends can be well estimated
relative to the variance seen from month to month. The Stefuiactions significantly enhance
signal-to-noise within the region of interest comparedaalitional spherical harmonics, which

further validates our approach.
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Figure 1: Ordered maps of various spherical harmonic coeffis. (a) The geoidal coefficients
(dim.92) of GRACE data from February 2010 after the average of all dadaths has been
removed. (b) Standard deviations,{ = [1/M > dy,, .]'/* for monthsn = 1, ..., M, where

n = 92 stands for February 2010) of the residuals as estimatedlityasiting the least-squares
fits comprising a linear and two seasonal terms with perid@fsahd 181 days from each time
series of geoidal spherical-harmonic coefficients and admg the covariance of the results.
(c) The predicted geoidal coefficients,f ¢.) from the least-squares model fit as described
before (in panel b). (d) The residual geoidal coefficielts & = dim.92 — Sim.92) determined

by subtracting the predicted coefficients (in panel c) fromGRACE geoidal field (in panel a).
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Residual SH correlation matrix from 108 months
a) between April 2002 and August 2011

2 | | | |

N
o
|
|

w
o
|
o
|

shperical harmonic degree |
N
ol
|
T

60 1 : iy
T T T
2 20 30 45 60
spherical harmonic degree I

Residual Slepian correlation matrix from 108
b) months between April 2002 and August 2011
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Figure 2: Correlation matrices for spherical-harmonic areptin coefficients created from the
residuals of 108 months from April 2002 to August 2011. (a)r€lation between spherical
harmonic coefficients, derived from the spectral covarianggc,,,,, ¢;,,|. (b) Correlation be-
tween Slepian function coefficients for a basis for Greethaith a region buffer of 0.5and a
bandwidth,L. = 60. The rounded Shannon numh&r= 20.
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Figure 3: Spatial covariance plots of residuals;|e,, ¢,/]. Fields have been rotated so that the
central cross denotes the pointvith which all the other points’ covary. In panel (a) and (c)
the full spectral covariance matrix is used. Panels (b) apdiges only the spectral variance,
the diagonal elements of covariance matrix. (a,b) The ¢anae of a point in Greenland with
the rest of the Earth. (c,d) Covariance of a point in westertafaica with the rest of the globe.
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Figure 4: Spatial standard deviation of (a) the diagonal el@siof our own estimated co-
variance matrix and (b) the time-averaged calibrated srdistributed with GRACE monthly
solutions. Both plots are saturated at 80 cm water equitaben (a) and (b) have the denoted

maximums of 204 and 87 cm, respectively.
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Figure 5: Slepian eigenfunctiongs, ¢-, ..., g12 that are optimally concentrated within a region
buffering Greenland by 0% Dashed line indicates the region of concentration. Fonestare
bandlimited tol. = 60 and are scaled to unit magnitude. The parametelenotes which
eigenfunction is shown. The parameteis the corresponding eigenvalue for each function,
indicating the amount of concentration. Magnitude valuésse absolute values are smaller
than 0.01 are left white.
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a) Synthetic recovered trend
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b) GRACE data trend (Gt/yr)

1.0 —/¥ 25
()
— \200 \
~1
0.5 80 \_

0.0 — T T T T T 1

20 25 30 35 40 45 50 55 60
bandwidth L

buffer extent (degrees)
[y
ul
|

Figure 6: The results of synthetic experiments to examive iezovered trends vary for differ-
ent bandwidths) and different region buffers. (a) We place a uniform masskrend over the
landmass of Greenland. To this trend at each month we addizatézn of the noise from our
residual covariance matrix. We then attempt to recovertthisd for different bases over Green-
land and report the normalized trend. (b) For the same basesport the trend recovered from
the actual GRACE data in Gt/yr. Also drawn is the 100% recowenytour (from panel a). We
use this synthetic experiment to inform our preferred cbaita 0.5 buffer around Greenland.
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Net change for various Slepian coefficients
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Figure 7: Time series of variousi(= 1, 5, 6, 7, 11, 20) Slepian coefficients and their best-fit
polynomial (blue lines). Each coefficient is fit by an annulipdic and linear function, as well
as quadratic and cubic polynomial terms if those terms pads-test for variance reduction.
Shown here are the coefficient and fitted function values with annual periodic function
subtracted from both. The mean is removed from each timeseri
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Figure 8: Predicted GRACE annual mass change in the Slepgas foaeach of the first twelve
eigenfunctions. Each eigenfunction, denoted by its indeis scaled by the total change in
that coefficient from 1/2003—-12/2010 divided by the timerspas), expressed as the cm/yr
water equivalent of surface density. Thus, this represietsnass change for an average year
during this time span. The inset variable “Int” displays th&egral of each function in the
concentration region within the dashed line expressedeasidiss change rate of gigatons per
year. Surface-density change of absolute value smaller@tiacm/year is left white.
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Mass Change for each Slepian Function
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Figure 9: Mass change in gigatons (Gt) for the three mostfsignt Slepian-function terms
(o = 1, 3, 11), which contribute more than 70% of total mass changr the data time span.

Monthly data are drawn as the solid black lines while 2heuncertainty envelopes are drawn
in grey. Each function has a mean of zero but has been ofts@tZero for clarity.
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