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Winter and spring controls on the summer food
web of the coastal West Antarctic Peninsula
Grace K. Saba1, William R. Fraser2, Vincent S. Saba3, Richard A. Iannuzzi4, Kaycee E. Coleman1,

Scott C. Doney5, Hugh W. Ducklow4, Douglas G. Martinson4, Travis N. Miles1, Donna L. Patterson-Fraser2,

Sharon E. Stammerjohn6,7, Deborah K. Steinberg8 & Oscar M. Schofield1

Understanding the mechanisms by which climate variability affects multiple trophic levels in

food webs is essential for determining ecosystem responses to climate change. Here we use

over two decades of data collected by the Palmer Long Term Ecological Research program

(PAL-LTER) to determine how large-scale climate and local physical forcing affect phyto-

plankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP).

We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every

4–6 years, are constrained by physical processes in the preceding winter/spring and a

negative phase of the Southern Annular Mode (SAM). Favorable conditions for phyto-

plankton included increased winter ice extent and duration, reduced spring/summer winds,

and increased water column stability via enhanced salinity-driven density gradients. Years of

positive chl-a anomalies are associated with the initiation of a robust krill cohort the following

summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling.

Projected climate change in this region may have a significant, negative impact on phyto-

plankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic

ecosystem.
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T
he western continental shelf region of the West Antarctic
Peninsula (WAP) is experiencing rapid climate change1

and one of the fastest rates of winter warming on Earth2.
Associated changes include significantly reduced sea ice extent,
concentration and duration3,4, and accelerated retreat and
melting of glaciers and ice sheets5,6. As life histories of most
polar organisms are attuned to ice seasonality, recent warming
and declines in sea ice have been associated with changes at key
trophic levels in the food web of the WAP region north of Palmer
Station, including a reduction in phytoplankton biomass7, shift in
phytoplankton community composition from large diatoms to
small flagellated cryptophytes7 and reduction in the abundance of
Antarctic krill (Euphausia superba; determined from data sets
spanning mid-1970s to 2003) (refs 8,9). In addition, a decline in
Adélie penguins (Pygoscelis adeliae) near Palmer Station has
occurred over the past three decades10.

Krill are the main trophic link between phytoplankton and
many apex predators in Antarctic food webs9,11. Adélie penguin
diets in the Palmer region during the past two decades almost
exclusively consist of Antarctic krill12. Thus, changes in krill
abundance and size distribution impact Adélie penguin foraging
ecology, specifically their foraging effort (that is, foraging trip
duration)12. Krill abundance tends to increase following years of
good recruitment (high biomass of smaller, younger individuals),
and conversely, decrease following years of poor recruitment12.
Consequently, Adélie penguin foraging trip duration is shortest
when krill are most abundant after high recruitment years and
longest after poor recruitment years12. During long foraging trips,
penguins have to use a portion of the gathered food for self-
maintenance, resulting in the delivery of less food to their
chicks13. Thus, one implication of longer foraging trips is that
they would have a negative impact on the reproductive output of
Adélie penguins and potentially other krill consumers such as
Antarctic fur seals, macaroni and gentoo penguins, and
albatrosses12,14. The reported krill decline in the far northern
WAP region8,9 is one of many factors suggested to be associated
with recent concomitant declines in the Adélie penguin
population15.

In addition to long-term changes, the WAP ecosystem is
characterized by high interannual variability16,17. Phytoplankton
dynamics have previously been associated with ice-mediated
changes in water column stability18,19. In turn, sea ice changes are
governed by fluctuations in the Southern Annular Mode (SAM)
and/or the El Niño-Southern Oscillation (ENSO)20–22. Krill
recruitment variability has also been linked to sea ice8,12. In the
far northern WAP region near the South Shetland–Elephant
Island area, phytoplankton biomass and krill recruitment were
regulated by ENSO-driven variability of the location of the
southern frontal systems of the Antarctic Circumpolar Current17.
Interpreting this cascade of changes in the ecosystem requires
understanding of the mechanisms linking the physical and
biological systems, and the degree of coupling between them.
Using data collected since 1991 from the Palmer Long Term
Ecological Research program (PAL-LTER) Stations B and E near
Palmer Station (Supplementary Fig. 1), we provide the first multi-
decadal analysis from this region and illustrate the succession of
large-scale and local physical forcing through trophic levels, from
bacteria and phytoplankton to an apex predator.

Results
Interannual variability in phytoplankton and bacteria. During
the 21-year-long PAL-LTER time series (1991–2012), peaks in
depth-integrated (0–50 m) summer (December–January–February)
chlorophyll-a (chl-a) concentration at coastal PAL-LTER
Stations B and E (Supplementary Fig. 1) have occurred, on

average, every 4–6 years (Fig. 1a). Although the bacterial pro-
ductivity (BP) data set is limited to the last decade (2002–2012),
the variability in the anomalies follows those of chl-a (Fig. 1a),
likely because phytoplankton in Antarctic waters provide the
main source of dissolved organic carbon for bacterial growth23.
The two dominant phytoplankton groups in the region are
diatoms and cryptophytes (as determined by accessory pigment
analysis, see Methods section). The phytoplankton composition
during these peak chl-a years was dominated by diatoms, whereas
the proportion of cryptophytes increased in anomalously low
chl-a years (one-way analysis of variance, Po0.001). Large
diatoms (420mm) are the preferred prey of krill because krill
cannot efficiently feed on phytoplankton o20mm in diameter24.

Link between phytoplankton biomass and krill recruitment.
Positive chl-a anomalies corresponded to statistically significant
krill recruitment events (evidenced in Adélie penguin diet
samples), which resulted in the start of a new krill cohort the
following season (Fig. 1b). This trend is substantiated by
significant positive linear trends in summer chl-a with a 1-year
lag of R1, the recruitment of krill age class year 1þ (percent
contribution of krill o30 mm to the total number of krill)
(Fig. 2). This suggests that high food availability facilitates
increased krill recruitment success by maximizing krill spawning
potential (that is, longer spawning season, larger number of eggs
per batch, larger number of egg batches, and/or higher egg
hatching success) or by supporting higher post-hatching survival
and growth rates—the specific responses are not yet known.
Thus, food availability (positive chl-a anomalies) appears critical
for the success of krill recruitment. In addition, sea ice is crucial
for the overwinter survival of younger krill age classes, and
specifically the provision of food and refugia from predators for
larval krill (overwintering of the year 1þ age class)8,9,12. Hence,
krill recruitment is a two-step process in which female condition
is improved through high chl-a during summer, and the larval
survival is enhanced by high ice cover the following winter8,12.

Large-scale climate and local physical drivers of chlorophyll.
From the investigation of potential large-scale and local controls
on the cyclical pattern of phytoplankton chl-a variability, we
identified both winter and spring controls that act to regulate
summer chl-a concentration (Figs 3 and 4). We conducted a
stepwise regression analysis to determine how well various
combinations of identified local (that is, wind, water column
stability, sea ice) and large-scale (that is, SAM; Multivariate ENSO
Index, MEI) physical forcing could predict variations in depth-
integrated chl-a for each summer. Based on a stepwise regression
and model ranking criteria, the highest-ranking models for both
Stations B and E log summer chl-a were linear functions. For
Stations B and E, physical forcing accounted for 66% and 54% of
summer depth-integrated chl-a variability, respectively (Station B:
adjusted r2¼ 0.66; F-statistic versus constant model, 9.62,
Po0.000005; root mean square error¼ 0.149; Fig. 3a. Station E:
adjusted r2¼ 0.54; F-statistic versus constant model, 7.08,
Po0.00001; root mean square error¼ 0.147; Fig. 3b). The pre-
dictor variables of summer chl-a were WAP August ice extent,
spring SAM (September–October–November), seasonal (Octo-
ber–February) wind speed, wind speed threshold (number of days
per season when wind speed was below 2.5 m s� 1), November–
December stratification and the interactions between these
variables. The MEI was not a statistically significant predictor for
chl-a. WAP August ice extent was inversely correlated with SAM
in July (Pearson’s R¼ � 0.61, Po0.005). The stratification index
that most significantly predicted chl-a in the models was Dsigma-
thetaTmin� 0 (kg m� 3 m� 1), defined as the density at the
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temperature minimum (Tmin) in the remnant Winter Water layer
(underlying the surface waters) minus the density at the surface.
In this region, Dsigma-thetaTmin� 0 is driven primarily by the
salinity gradient in the upper water column, and is most pro-
nounced during surface freshening from sea ice melt and retreat
in the spring. The interaction between wind threshold and
Dsigma-thetaTmin� 0 was the strongest predictor for Station B
chl-a (t-statistic¼ 4.99, Po0.00005), whereas the interaction
between WAP August ice extent and wind threshold was the
strongest predictor for Station E chl-a (t-statistic¼ 4.36,
Po0.0005); refer to Methods section and Supplementary Tables 1
and 2 for details on the model equations and statistics. These
model results indicate that phytoplankton biomass, and indirectly
BP, krill recruitment, and Adélie penguin diet composition near
Palmer Station, are driven by water column stability, which is
influenced by both winter (July SAM, sea ice extent) and spring
(SAM, wind, Dsigma-thetaTmin� 0) processes. We refer to this
preconditioning as the ‘setup event’. Favourable conditions for
phytoplankton, specifically diatoms, included increased winter ice
extent and duration, reduced spring/summer winds and increased
water column stability via enhanced salinity-driven density
gradients.

Discussion
Favourable conditions for phytoplankton growth and krill
recruitment typically occurred during a � SAM in winter and
spring. SAM variability is characterized by the opposing
atmospheric pressure anomalies between Antarctica and mid-
latitudes, and is reflected in the strength of subpolar westerly

winds20,26. When SAM is positive (þ SAM), warmer north-
westerly winds move over the WAP region. The increasing
trend of þ SAM occurrences has contributed to Antarctic
warming trends over the recent decades27,28. During a � SAM
in winter (that is, July), cold southerly winds move across the
Peninsula, increasing winter ice extent and duration and
delaying ice retreat in spring. Wind speeds and the number
of windy days are significantly reduced during a � SAM in
spring/summer (October–February, Pearson’s R, Po0.005).
The intensity of the local atmospheric response to SAM is also
related to ENSO-SAM interactions22,29–31. Previous studies have
shown an intensified atmospheric response (and thus sea ice as
well) when a þ SAM/La Niña or � SAM/El Niño are coincident
(for example, a � SAM coincident with El Niño can amplify
blocking high conditions favourable for high winter sea ice and/or
late spring retreat), relative to the response when þ SAM or
� SAM occurs when ENSO is otherwise neutral, and vice
versa22,30,31. Conversely, a dampened response occurs when
þ SAM/El Niño or � SAM/La Niña were coincident. Thus,
although the results in the current study indicate that SAM
is a significantly stronger predictor of chl-a (due to direct,
regionalized influence on winds, ice, water column stability and
so on) compared with ENSO (MEI), the concurrent influence
from SAM/ENSO interactions is embedded in the SAM index
time series.

Both increased winter sea ice (extent and duration) and
reduced winds in spring–summer contribute to the increase in
salinity-driven density gradients (Dsigma-thetaTmin� 0) in the
upper water column. Whereas individual factors of winter and
spring forcing can constrain seasonal phytoplankton dynamics,
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Figure 1 | Interannual variability of multiple trophic levels of the Palmer Station food web and linkages between them. (a) Summer (December–

January–February) depth-integrated (0–50 m) chlorophyll-a (chl-a) and bacterial productivity (BP) anomalies pooled from Palmer Stations B and E for the

PAL-LTER time series, 1991–2012 (see Methods section). The average combined (Stations B and E) depth-integrated chl-a and BP for the time series is

108 mg m� 2 and 32.4 mg C m� 2 d� 1, respectively. (b) Size-class distribution (percent contribution (colours; see legend) of each krill size bin (y axis)) of

Antarctic krill, E. superba, in Adélie penguin diet samples, 1988–2012; modified with permission from Ducklow et al.25 The vertical red arrows indicate the

appearance of strong new krill cohorts in years following positive chl-a anomalies.
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the combined interactions between these factors, as dictated by
SAM, drive the overall summer biological processes (Figs 3
and 4).

Relatively, high ice extent in the winter likely facilitates higher
stratification in the following spring and summer via two
mechanisms: first, by insulating the water column from high
winter winds and thus preventing the formation of a deep winter
mixed layer7,19; and second, by providing a larger volume of sea ice
melt water that strengthens the density gradient in the upper water
column in the following spring and summer18. Similar to
Marguerite Bay farther south along the WAP19, Palmer
November–December mixed layer depth (MLD) was not
significantly correlated with summer chl-a. However, the depth
of November–December Tmin (that is, the Winter Water core) was
on average B8 m shallower during years with higher chl-a (one-
way analysis of variance, Po0.05; Fig. 4). Stratification indices
Dsigma-thetaTmin� 0 and MLD were also associated with the
timing of sea ice retreat (Pearson’s R¼ 0.70 and Po0.005 for
MLD; Pearson’s R¼ 0.50 and Po0.05 for Dsigma-thetaTmin� 0),
suggesting that later sea ice retreat in the spring may provide
additional wind protection and assist in maintaining water column
stability. Similar mechanisms were suggested for Marguerite Bay,
farther south along the WAP, in which years with longer winter ice
cover favoured larger summer blooms as a consequence of a
shallower winter mixed layer, resulting in greater water column
stability the following summer19. During light ice cover winters,
the winter mixed layer was deeper, and water column stability and
chl-a content were lower the following summer19.

There were no statistically significant correlations between
chl-a and cloud cover or surface macronutrient concentrations
(macronutrients are seldom depleted in the WAP region10).
Long-term dissolved iron data were not available for this region.
Venables et al.19 argue that increased stratification promotes
phytoplankton growth via reducing the variability in light
conditions (as opposed to enhancing overall light availability),
and may concentrate iron from glacial melt water inputs in the
upper water column. Therefore, the mechanisms driving the
dynamic relationship between water column stability and
phytoplankton biomass could be light and/or iron limitation
and need to be investigated further. Similarly, the roles of sea ice
loss, ocean freshening, light and nutrient limitation on Arctic
Ocean marine primary productivity also remain poorly
understood, with some studies indicating shifts from larger
nanoplankton to smaller picoplankton dominance owing to
enhanced stratification from increased river runoff32–34.

One current paradigm regarding the origins or ‘source’
populations of krill in the WAP invokes the transportation of
larvae ‘upstream’ from the Bellingshausen Sea in the southwest to
the coastal shelves in the northeast via the Antarctic Circumpolar
Current35,36. However, the occurrence of very small krill
(r16 mm) present in Adélie penguin diets in our study area12

(Fig. 1b) has led to suggestions that certain areas of the WAP
including the Palmer Station region are indicative of a more
localized, self-sustaining krill population12,37. Furthermore,
previous studies identified the Palmer Station region (Anvers
Island) as a retention area, where larvae spawned from adult krill
likely remain in the region and sustain a local krill
population37,38. The tight linkages demonstrated between local
physical forcing and phytoplankton and krill in our study also
support the idea that localized processes may be more important
than remote ‘upstream’ processes in forcing the system in the
Palmer Station region.

Changes in the WAP climate and ecosystem have been
profound over the past 50 years1, and include significant
declines in sea ice3,4, phytoplankton biomass7 and krill8,9 in the
region north of Palmer Station. Global climate model projections
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under continued greenhouse gas emission scenarios up to the
year 2100 suggest a further increase in temperature39 and an
increase in the occurrence of þ SAM20,27,40. Repercussions of
this projection are the continued increase in the strength of warm,
north-westerly winds21 and decline in sea ice4, which will act to
reduce water column stability. We hypothesize that this trend will
migrate south along the WAP in the next few decades and
perhaps expand to other Antarctic regions undergoing a long-
term decline in sea ice. Fewer preconditioning ‘setup events’ will
act to decrease phytoplankton biomass, favourable krill prey
(diatoms) and krill recruitment. Interestingly, our analysis of
E. superba abundance in the full PAL-LTER sampling region
(Palmer Station and southward) over the last two decades
shows no overall long-term decline (in contrast to declines
previously documented north of Palmer Station8,9), but rather
shows abundance peaks (positive anomalies) occurring every
4–6 years. Antarctic krill age class structure is dominated by
single, strong cohorts12, which we show to be highly dependent
on summer phytoplankton biomass in this coastal site. Currently,
chl-a anomalies occur every 4–6 years and are associated with
� SAM. The Antarctic krill lifespan ranges 6–7 years, which is in
the range of the current 4–6 year cycle in positive chl-a
anomalies. Thus, an increase in the occurrence of þ SAM
resulting in even one cycle being longer than the krill lifespan
could be catastrophic to the krill population. A recent sensitivity
analysis suggests that a decline in summer chlorophyll
concentration could have more significant impacts on Antarctic
krill biomass than direct effects of warming41. A decline in
Antarctic krill will negatively impact higher trophic levels
dependent on Antarctic krill including penguins, flighted sea
birds, seals and whales, most notably their foraging effort and
reproductive output.

Methods
Seawater sampling. The PAL-LTER program has been sampling in the Palmer
Station region (64.8�S, 64.1�W) in the austral spring-fall annually since December
1991. We examined data from December 1991 through February 2012. The main
sampling locations at Palmer Station are an inshore station B (depth E75 m) and a
more offshore Station E (depth E200 m; Supplementary Fig. 1), both within the
Adélie penguin foraging area. Sampling at each station is conducted via Zodiac,
whereby a Conductivity, Temperature, Depth sensor (CTD) is lowered manually
for a vertical profile of water column physics, immediately followed by a Go-Flo
bottle cast to collect seawater at selected depths for standing stock and rate mea-
surements (that is, chlorophyll, phytoplankton pigments, primary productivity and
BP). Seawater from each depth is stored in dark amber Nalgene bottles and pro-
cessed immediately upon returning to the laboratory at Palmer Station.

The goal of PAL-LTER is to sample Stations B and E twice per week from mid-/
end of October to mid-/end March. However, successful sampling in this region is
heavily dependent on weather, sea ice, time and personnel. Thus, data gaps exist for
this time series, whereby some seasons, specifically those early in the time series,
had limited or irregular sampling. Data exist for all years except 2007–08.
Nonetheless, the summer months of December, January and February (DJF) were
the most consistently sampled consecutive months. When data were available for
the full sampling season (October–March), the depth-integrated mean chl-a during
DJF was almost always higher than when all months (October–March) were pooled
together, suggesting that maximum phytoplankton biomass typically accumulated
in summer. Thus, we considered DJF a sound representation of the biological
growing season and we used these months to estimate summer averages of
biological data. Because we believe local physical and large-scale climate drivers
create a ‘setup event’ regulating phytoplankton growth, we examined data in the
months before the DJF summer maximum. Monthly sample sizes for each
measured property are summarized in Supplementary Table 3. All raw data
collected by PAL-LTER (chlorophyll, accessory pigments, BP, physical
oceanographic data and penguin diet composition) are available at: http://
oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets. Other data, including sea
ice properties, meteorological and climate indices had no data gaps during the time
period examined.

Chl-a and accessory pigments. Seawater collected from Go-Flo bottles at dif-
ferent depths was filtered onto GF/F filters, then the filters were wrapped in foil and
frozen at � 80 �C for fluorometric phytoplankton chl-a analysis42 (mg chl-a m� 3);

– SAM

High ice

+ SAM

Low wind

10

20

30

40

J J J J J A S O N D J FA S O N D F
Spring SummerWinter Spring SummerWinter

z 
(m

)

High wind
Low ice

Reproductive krill: age class 3–7
Young krill: age class 1 and 2

Diatoms
Cryptophytes
Krill eggs
Sigma-theta
Depth of Tmin

Figure 4 | Effects of large-scale climate and local physical forcing on biological processes in the coastal WAP. Generalized illustration summarizing how

individual and combined winter and spring climate, weather and physical oceanographic processes (see months July–February on x axis) cascade from

phytoplankton to krill recruitment in a negative Southern Annular Mode (� SAM) in July and spring (left panel) and a positive SAM (þ SAM) in July and

spring (right panel). Depth of temperature minimum (Tmin) in the remnant Winter Water layer in the region was estimated from Stations B and E

November–December averages. All other properties (phytoplankton, krill, krill eggs and sigma-theta) are generalized for qualitative illustration (more

versus less), and do not represent quantitative differences between negative and positive SAM. Note: female E. superba spawn over deeper water; this

illustration is meant to depict relative egg production.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5318 ARTICLE

NATURE COMMUNICATIONS | 5:4318 | DOI: 10.1038/ncomms5318 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets
http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets
http://www.nature.com/naturecommunications


or flash frozen in liquid nitrogen and stored at � 80 �C for high-performance
liquid chromatography analysis for phytoplankton accessory pigments/
phytoplankton composition43 (mg pigment m� 3). The taxonomic composition of
the phytoplankton assemblages was derived quantitatively from an analysis of
high-performance liquid chromatography pigment data with CHEMTAX (V195)
(refs 43,44) using initial pigment ratios previously derived from WAP
phytoplankton45. For each vertical profile, we calculated the depth-integrated chl-a
and accessory pigments (0–50 m; mg m� 2). The two dominant algal groups in the
region are diatoms and cryptophytes. On average prymnesiophytes, prasinophytes
and mixed flagellates account for o20%, 5% and 5% of the chl-a biomass,
respectively. Sampling in five seasons (1993/1994, 1994/1995, 2001/2002, 2003/
2004 and 2004/2005) had few vertical profiles that extended to 50 m. For these
profiles, we integrated to the deepest depth sampled (median¼ 40 m); thus, depth-
integrated chl-a was likely slightly underestimated. As mentioned above, data gaps
exist in the biological data, specifically for early (October and November) and late
(March and April) months. Thus, seasonal (summer) chl-a averages were
calculated using only DJF data. The chl-a at Stations B and E did not differ
significantly in magnitude or variability over time; thus, chl-a data for these two
stations were combined then averaged. The average combined depth-integrated
summer (DJF) chl-a for the analysed 21-year time series (1991/1992–2011/2012
season) was 108 mg m� 2. Anomalies for each season were calculated from this
average and plotted in Fig. 1a.

Bacterial productivity. Bacterial measurements commenced at Palmer Station in
the 2002/2003 season. BP was not measured during the 2006–2007 and 2007–2008
seasons. All measurements are from the same samples as the chl-a data and are
similarly integrated to 50 m. BP (mg C m� 2 d� 1) is estimated from the rate of
3H-leucine incorporation measured in 3–6 h incubations performed in the labora-
tory at Palmer Station in the dark at in situ temperatures46. BP was converted from
leucine incorporation rates using the factor 1,500 g C biomass produced per mole
leucine incorporated. Data were combined and averaged as for chl-a.

Water column stability/stratification parameters. Over the course of the pro-
gramme, physical oceanographic data (temperature and conductivity as a function
of pressure) were collected using several instruments. From 1991 to 2007, a SeaBird
Elecronics (www.seabird.com) Seacat SBE 19 was used. From 2006 onwards, a
SeaBird Elecronics Seacat SBE 19plus was used, except in field season 2008–2009
(see below). We accounted for sensor drift using calibrations made before and after
each field season, following methods recommended by SeaBird, assuming linear
drift for well-behaved sensors. We used SeaBird’s standard software functions to
process the data, removing effects for zodiac heave (pressure reversals), and to
ensure that the temperature, conductivity and pressure were measured on the same
water parcel. Data were averaged into 2 db pressure bins for the older SBE 19 data
and 1 db bins for the newer instrument, which samples at twice the frequency.
Conductivity data were then converted to salinity. From 2008 on, a Falmouth
Scientific Inc. FSI MCTD-3 and a Satlantic HyperPro-II (which includes tem-
perature, conductivity and pressure ancillary sensors) were also used to collect
physical oceanographic data. As much as possible, we followed the same methods
to process these data. The three instruments combined provided full data coverage
every time water samples were collected.

Plots of each cast were inspected visually and in relation to other casts to look for
any issues with the data (for example, bad surface values due to sea state). These
values were removed from the data set. Sigma-theta (density; kg m� 3) was
calculated for each pressure bin. A temperature minimum (Tmin) and its depth (in
metres) were determined for each cast, ensuring that they represented the remnant
cold Winter Water from the previous winter and thus have some warmer water
below. The sigma-theta gradient to Tmin (Dsigma-thetaTmin� 0; kg m� 3 m� 1) is
defined as sigma-theta at the depth of Tmin minus sigma-theta at the surface divided
by the depth difference between the two. The mixed layer depth (MLD; in metres) is
defined as the deepest point of the well-mixed layer of water at the surface, above
Tmin. The method looks for the strongest (weighted) inflection point in temperature
(towards colder temperatures and above Tmin)—further details may be found in
Martinson and Iannuzzi47. It is thus warmer and less salty than waters below it. We
used November–December averages of the stratification indices (depth of Tmin,
Dsigma-thetaTmin� 0, MLD) from each season for this analysis as this was the time
period the data were most significantly correlated to summer chl-a.

Adélie penguin diets and krill population size-class structure. Adélie penguin
diet samples were obtained during January–February for the years 1988 (1987–
1988 field season) to 2012 (2011–2012 field season) from adult penguins during the
chick-feeding phase of the reproductive cycle. Samples were obtained by using the
water off-loading method (forced regurgitation through stomach lavage48), and
birds were released unharmed after sampling. All wildlife handling methods were
reviewed and approved by the Institutional Animal Care and Use Committee at
Marine Biological Laboratory, Woods Hole, MA, USA, protocol suite no. 11–67.
Typically, 4–5 Adélie penguins were sampled at 5–7-day intervals during the field
season. Following sorting of the diet samples, ingested krill were measured from the
base of the eye to the tip of the telson and assigned to 1 of 8 size categories (5 mm
increments) between 16 and 65 mm. Because krill grow 45 mm per year49, this

binning resolves changes in population size-class structure that occur between
years. Only whole, fresh krill originating from the upper portion of the stomach
were measured. These typically are the first to be off-loaded and their fresh state
clearly separates them from the more digested layers that often follow. In all cases,
the krill measured represented a subsample obtained by sorting through the entire
fresh sample to ensure that smaller specimens were not overlooked; 50–100 krill
were typically measured in each subsample. The recruitment index (R1) is based on
the relative abundance of the lþ age class (the ratio of the number of krill aged 1
year to the number of total krill). We defined our 1þ age class as krill o30 mm in
length. Because the krill length data are assigned to bins in 5 mm increments, this
size group is just above the 1þ age class used in most previous studies (krill
o28 mm (refs 50–52)). However, recruitment years have been estimated with
similar distributions using krill o36 mm (ref. 53). The R1 data were normally
distributed (Jarque–Bera54 and w2-tests, Po0.05).

Sea birds are good proxy indicators of the spatial and temporal variance
associated with the structure (length–frequency distribution) of their prey
populations12,55,56. Net tows have not been collected at the local Palmer Station
sites (including Stations B and E) owing to lack of appropriate equipment (that is,
no winches on small boats). Net tows have been conducted during the January
LTER offshore cruise since 1993. We are most confident of the more recent size-
class data. Starting in January 2009, the abundance tows were split evenly with all
the krill in a split portion measured for size. Thus, we believe that the krill size-class
net tow data from 2009 onwards is a close representation of the overall krill
population. We compared net tow data from the LTER cruise 600 line, which
includes cruise sampling stations closest to Palmer Station (Supplementary Fig. 2),
with Adélie penguin diet data from 2009 onwards (Supplementary Fig. 3). The two
data sets are in good agreement (2009–2012 combined; Pearson’s R¼ 0.86,
adjusted r2¼ 0.74, Po0.000001), demonstrating that size-class data collected from
Adélie penguin diets are a good representation of the overall krill population in this
region.

Climate indices. Monthly SAM data were obtained from the National Environment
Research Council—British Antarctic Survey26 (http://www.nerc-bas.ac.uk/icd/gjma/
sam.html). Monthly MEI was obtained for the length of the PAL-LTER time series
from National Oceanic and Atmospheric Administration, Earth System Research
Laboratory, Physical Sciences Division57 (http://www.esrl.noaa.gov/psd/data/
correlation/mei.data). Both SAM and MEI climate indices were tested for
correlations with physical (sea ice, air temperature, sea surface temperature (SST)
and wind) and biological (that is, chlorophyll) properties assuming no lag and
various lag times (1–6 months). SAM was statistically a better predictor than MEI for
physical properties (WAP August ice extent, wind, Dsigma-thetaTmin� 0) and chl-a.

Sea ice. WAP (B60�–80�W) monthly and Anvers (within 200 km south and west
of 64S/64W) annual sea ice extent (km2) and area (km2) were extracted from the
GSFC Bootstrap SMMR-SSM/I Version 2 quasi-daily time series (1991–2012) of
sea ice concentration58 from the EOS Distributed Active Archive Center at the
National Snow and Ice Data Center (University of Colorado at Boulder, http://
nsidc.org), augmented with SSM/I and near real-time data (2011–2012), to produce
a time series extending from 1991/92 to 2011/12. Sea ice extent is defined as the
total area within the ice edge, whereas sea ice area is the actual ocean area covered
by sea ice (that is, based on satellite-derived sea ice concentration and taking into
account openings and leads within the ice edge). Anvers annual ice season duration
is the number of days between when sea ice first appears in autumn in a given
location and when it last appears in spring, the former being the day of sea ice
advance, the latter, day of sea ice retreat22.

Wind and air temperature. Daily weather observations (air temperature, pressure,
wind speed, wind direction, precipitation and sky cover) at Palmer Station,
Antarctica started in April of 1989. Weather data acquisition was originally by
manual observation and continued with an automated system installed in
November 2001. Measurements began shifting from manual to automated obser-
vations in June 2003 until the manual observations were ended in December 2003.
Data are collected, compiled and distributed by the US Antarctic science support
contractor. Electronic distribution occurs monthly from Palmer Station via internet
to the University of Wisconsin-Madison’s Antarctic Meteorological Research
Center and Automatic Weather Station Project archive: ftp://amrc.ssec.wisc.edu/
pub/palmer/climatology/. Data are also available at: http://oceaninforma-
tics.ucsd.edu/datazoo/data/pallter/datasets. Wind speeds were averaged monthly
and seasonally (October–February). The PAL-LTER time series average wind speed
for October–February was 4.8 m s� 1. Because a potential mechanism to set up
water column stability is a time period of low winds, we also calculated the number
of days per season (and number days per month) of wind speeds under 4.8 m s� 1,
as well as the maximum number of consecutive days under 4.8 m s� 1 per season
(and per month). We tested additional wind thresholds, and 2.5 m s� 1 was most
significantly correlated with Dsigma-thetaTmin� 0 and chl-a. Air temperature data
was processed (seasonal and monthly averages) similar to wind data.

Sea surface temperature. Monthly SST data (�C) used in this study originated
from the National Oceanic and Atmospheric Administration, National Centers for
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Environmental Prediction, Environmental Modeling Center, Climate Modeling
Branch, Global monthly SST data59 (version 2). The selected data were SST
estimates from 64.5�S, 64.5�W, near Palmer Station.

Statistical analyses. We used Pearson’s R correlation and linear regression tests
(StatPlus:Mac) to determine relationship direction (positive or negative) and
significance between climate indices and physical and biological parameters.

Stepwise regression. We conducted a stepwise regression analysis in MATLAB
for both Palmer Stations B and E to determine the effects of both local (that is,
wind, sea ice and water column stability) and large-scale (that is, SAM and MEI)
physical forcing on the mean integrated, summer chl-a from both stations (Fig. 3).
Multiple model types were analysed that included many types of General Linear
Models (GLMs) and the stepwise iterations added and removed individual model
terms (for example, with or without monthly wind speed). Integrated chl-a at these
two stations is not normally distributed; thus, we log transformed each chl-a value
before performing the stepwise regression (and other analyses described above).
Using GLMs requires that the dependent variable being modelled (in this case,
chl-a) must be normally distributed.

After log transforming chl-a at each station, we used three different tests to
determine whether the transformed data was from a normal distribution. These
tests were Jarque–Bera54, Lilliefors60 and w2-goodness-of-fit using a 95%
confidence interval. All three tests confirmed that the time series of log-
transformed chl-a (dependent variable) from each station were from a normal
distribution. In addition, to confirm that the linear relationships between the
predictor variables and chl-a were not influenced by outliers in the predictor
variables, we applied these same three tests of normal distribution to the residuals
between modelled and observed chl-a. These tests confirmed that the residuals at
both stations were from a normal distribution and thus were not influenced by
outliers or highly skewed predictor variables. Finally, to determine whether the
residuals between modelled and observed chl-a were autocorrelated (serial
correlation) or not, we used the Durbin–Watson (dw) test61 at a 95% confidence
interval. The residuals of the model fits at both stations were not autocorrelated
(Station B: dw¼ 2.1288, P¼ 0.8241; Station E: dw¼ 1.6928, P¼ 0.2532).

Model selection was based on the corrected Akaike Information Criterion62

(AICc). This information criterion selects the best model that simulates the
observed data while taking into account both the sample size of the data set and the
number of estimated parameters in each model. We tested a subset of non-linear
models, and the linear models produced lower AICc values with fewer predictor
variables. The AICc values for Stations B and E were � 18.96 and � 25.02,
respectively. The regression was conducted using only the vertically integrated
chl-a data from the summer months of December–January–February, which are
the most consistent sampling months for the LTER time series. Therefore, we
selected the model to simulate log mean monthly depth-integrated chl-a (mg
chl-a m� 2) from December–February. (log summer chl-a; n¼ 36 for Station B and
n¼ 38 for Station E). The highest ranked predictor variables for both Stations B
and E summer chl-a were spring (September–October–November) SAM
(SAM_SON), Dsigma-thetaTmin� 0_November/December (kg m� 3 m� 1), WAP
August ice extent (km2), wind threshold (number of days per season wind speeds
were o2.5 m s� 1) and various interactions between these variables. Statistics for
each predictor are presented in Supplementary Table 1. The GLMs used to simulate
log summer chl-a (mg chl-a m� 2) for Stations B and E are:

Station B log summer chl-a¼ 0.32287þ (0.041656� days per season
under 2.5 m s� 1)þ (0.0000063299�WAP August ice extent)þ (� 96.913
�B_Dsigma-thetaTmin� 0_November/December)þ (� 0.28428� SAM_SON)
þ (� 0.00000011925�WAP August ice extent� days per season under
2.5 m s� 1)þ (1.938� days per season under 2.5 m s� 1�B_ Dsigma-
thetaTmin� 0_November/December)þ (0.012671� days per season under
2.5 m s� 1� SAM_SON)þ (� 19.88�B_Dsigma-thetaTmin� 0_November/
December� SAM_SON).

Station E log summer chl-a¼ � 2.5186þ (0.12287� days per season
under 2.5 m s� 1)þ (0.0000083066�WAP August ice extent)þ (� 276.15
�E_Dsigma-thetaTmin� 0_November/December)þ (� 0.21811� SAM_SON)
þ (� 0.00000021796�WAP August ice extent� days per season under
2.5 m s� 1)þ (0.0070199� SAM_SON� days per season under 2.5 m s� 1)
þ (0.00046018�WAP August ice extent� E_Dsigma-thetaTmin� 0_November/
December).

Multicollinearity, a statistical phenomenon in which two or more predictor
variables in a multiple regression model are highly correlated, can change
parameter estimates, increase standard errors and reduce the power to detect
reliable effects of correlated variables in the regression model63. To assess how
much the variance of the coefficient estimate is being inflated by multicollinearity
in our model, we determined the Variance Inflation Factors (VIFs) for each
predictor variable used in the GLMs for Stations B and E chl-a. The typical rule of
thumb is that multicollinearity can be ignored for a particular predictor variable if
its VIFo4.0 (ref. 64). However, predictor variables that have a VIF of 4.0 or higher
do not discount the regression analysis or call for the elimination of these predictor
variables64. In our regressions, all VIFs were o4.0, which suggests that
multicollinearity did not affect the GLM coefficient estimates or standard errors
(Supplementary Table 2).
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